15 resultados para Microsatellites

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, Y chromosome markers have begun to be used to study Native American origins. Available data have been interpreted as indicating that the colonizers of the New World carried a single founder haplotype. However, these early studies have been based on a few, mostly complex polymorphisms of insufficient resolution to determine whether observed diversity stems from admixture or diversity among the colonizers. Because the interpretation of Y chromosomal variation in the New World depends on founding diversity, it is important to develop marker systems with finer resolution. Here we evaluate the hypothesis of a single-founder Y haplotype for Amerinds by using 11 Y-specific markers in five Colombian Amerind populations. Two of these markers (DYS271, DYS287) are reliable indicators of admixture and detected three non-Amerind chromosomes in our sample. Two other markers (DYS199, M19) are single-nucleotide polymorphisms mostly restricted to Native Americans. The relatedness of chromosomes defined by these two markers was evaluated by constructing haplotypes with seven microsatellite loci (DYS388 to 394). The microsatellite backgrounds found on the two haplogroups defined by marker DYS199 demonstrate the existence of at least two Amerind founder haplotypes, one of them (carrying allele DYS199 T) largely restricted to Native Americans. The estimated age and distribution of these haplogroups places them among the founders of the New World.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microsatellites, tandem arrays of short (2-5 bp) nucleotide motifs, are present in high numbers in most eukaryotic genomes. We have characterized the physical distribution of microsatellites on chromosomes of sugar beet (Beta vulgaris L.). Each microsatellite sequence shows a characteristic genomic distribution and motif-dependent dispersion, with site-specific amplification on one to seven pairs of centromeres or intercalary chromosomal regions and weaker, dispersed hybridization along chromosomes. Exclusion of some microsatellites from 18S-5.8S-25S rRNA gene sites, centromeres, and intercalary sites was observed. In-gel and in situ hybridization patterns are correlated, with highly repeated restriction fragments indicating major centromeric sites of microsatellite arrays. The results have implications for genome evolution and the suitability of particular microsatellite markers for genetic mapping and genome analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new genetic distance for microsatellite loci, incorporating features of the stepwise mutation model, and test its performance on microsatellite polymorphisms in humans, chimpanzees, and gorillas. We find that it performs well in determining the relations among the primates, but less well than other distance measures (not based on the stepwise mutation model) in determining the relations among closely related human populations. However, the deepest split in the human phylogeny seems to be accurately reconstructed by the new distance and separates African and non-African populations. The new distance is independent of population size and therefore allows direct estimation of divergence times if the mutation rate is known. Based on 30 microsatellite polymorphisms and a recently reported average mutation rate of 5.6 x 10(-4) at 15 dinucleotide microsatellites, we estimate that the deepest split in the human phylogeny occurred about 156,000 years ago. Unlike most previous estimates, ours requires no external calibration of the rate of molecular evolution. We can use such calibrations, however, to test our estimate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immigration is an important force shaping the social structure, evolution, and genetics of populations. A statistical method is presented that uses multilocus genotypes to identify individuals who are immigrants, or have recent immigrant ancestry. The method is appropriate for use with allozymes, microsatellites, or restriction fragment length polymorphisms (RFLPs) and assumes linkage equilibrium among loci. Potential applications include studies of dispersal among natural populations of animals and plants, human evolutionary studies, and typing zoo animals of unknown origin (for use in captive breeding programs). The method is illustrated by analyzing RFLP genotypes in samples of humans from Australian, Japanese, New Guinean, and Senegalese populations. The test has power to detect immigrant ancestors, for these data, up to two generations in the past even though the overall differentiation of allele frequencies among populations is low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromosomal forms of Anopheles gambiae, given the informal designations Bamako, Mopti, and Savannah, have been recognized by the presence or absence of four paracentric inversions on chromosome 2. Studies of karyotype frequencies at sites where the forms occur in sympatry have led to the suggestion that these forms represent species. We conducted a study of the genetic structure of populations of An. gambiae from two villages in Mali, west Africa. Populations at each site were composed of the Bamako and Mopti forms and the sibling species, Anopheles arabiensis. Karyotypes were determined for each individual mosquito and genotypes at 21 microsatellite loci determined. A number of the microsatellites have been physically mapped to polytene chromosomes, making it possible to select loci based on their position relative to the inversions used to define forms. We found that the chromosomal forms differ at all loci on chromosome 2, but there were few differences for loci on other chromosomes. Geographic variation was small. Gene flow appears to vary among different regions within the genome, being lowest on chromosome 2, probably due to hitchhiking with the inversions. We conclude that the majority of observed genetic divergence between chromosomal forms can be explained by forces that need not involve reproductive isolation, although reproductive isolation is not ruled out. We found low levels of gene flow between the sibling species Anopheles gambiae and Anopheles arabiensis, similar to estimates based on observed frequencies of hybrid karyotypes in natural populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic analysis of limiting quantities of genomic DNA play an important role in DNA forensics, paleoarcheology, genetic disease diagnosis, genetic linkage analysis, and genetic diversity studies. We have tested the ability of degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) to amplify picogram quantities of human genomic DNA for the purpose of increasing the amount of template for genotyping with microsatellite repeat markers. DNA was uniformly amplified at a large number of typable loci throughout the human genome with starting template DNAs from as little as 15 pg to as much as 400 ng. A much greater-fold enrichment was seen for the smaller genomic DOP-PCRs. All markers tested were amplified from starting genomic DNAs in the range of 0.6–40 ng with amplifications of 200- to 600-fold. The DOP-PCR-amplified genomic DNA was an excellent and reliable template for genotyping with microsatellites, which give distinct bands with no increase in stutter artifact on di-, tri-, and tetranucleotide repeats. There appears to be equal amplification of genomic DNA from 55 of 55 tested discrete microsatellites implying near complete coverage of the human genome. Thus, DOP-PCR appears to allow unbiased, hundreds-fold whole genome amplification of human genomic DNA for genotypic analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the nuclear genome of Saccharomyces cerevisiae, simple, repetitive DNA sequences (microsatellites) mutate at rates much higher than nonrepetitive sequences. Most of these mutations are deletions or additions of repeat units. The yeast mitochondrial genome also contains many microsatellites. To examine the stability of these sequences, we constructed a reporter gene (arg8m) containing out-of-frame insertions of either poly(AT) or poly(GT) tracts within the coding sequence. Yeast strains with this reporter gene inserted within the mitochondrial genome were constructed. Using these strains, we showed that poly(GT) tracts were considerably less stable than poly(AT) tracts and that alterations usually involved deletions rather than additions of repeat units. In contrast, in the nuclear genome, poly(GT) and poly(AT) tracts had similar stabilities, and alterations usually involved additions rather than deletions. Poly(GT) tracts were more stable in the mitochondria of diploid cells than in haploids. In addition, an msh1 mutation destabilized poly(GT) tracts in the mitochondrial genome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linkage and association analyses were performed to identify loci affecting disease susceptibility by scoring previously characterized sequence variations such as microsatellites and single nucleotide polymorphisms. Lack of markers in regions of interest, as well as difficulty in adapting various methods to high-throughput settings, often limits the effectiveness of the analyses. We have adapted the Escherichia coli mismatch detection system, employing the factors MutS, MutL and MutH, for use in PCR-based, automated, high-throughput genotyping and mutation detection of genomic DNA. Optimal sensitivity and signal-to-noise ratios were obtained in a straightforward fashion because the detection reaction proved to be principally dependent upon monovalent cation concentration and MutL concentration. Quantitative relationships of the optimal values of these parameters with length of the DNA test fragment were demonstrated, in support of the translocation model for the mechanism of action of these enzymes, rather than the molecular switch model. Thus, rapid, sequence-independent optimization was possible for each new genomic target region. Other factors potentially limiting the flexibility of mismatch scanning, such as positioning of dam recognition sites within the target fragment, have also been investigated. We developed several strategies, which can be easily adapted to automation, for limiting the analysis to intersample heteroduplexes. Thus, the principal barriers to the use of this methodology, which we have designated PCR candidate region mismatch scanning, in cost-effective, high-throughput settings have been removed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organisms producing resting stages provide unique opportunities for reconstructing the genetic history of natural populations. Diapausing seeds and eggs often are preserved in large numbers, representing entire populations captured in an evolutionary inert state for decades and even centuries. Starting from a natural resting egg bank of the waterflea Daphnia, we compare the evolutionary rates of change in an adaptive quantitative trait with those in selectively neutral DNA markers, thus effectively testing whether the observed genetic changes in the quantitative trait are driven by natural selection. The population studied experienced variable and well documented levels of fish predation over the past 30 years and shows correlated genetic changes in phototactic behavior, a predator-avoidance trait that is related to diel vertical migration. The changes mainly involve an increased plasticity response upon exposure to predator kairomone, the direction of the changes being in agreement with the hypothesis of adaptive evolution. Genetic differentiation through time was an order of magnitude higher for the studied behavioral trait than for neutral markers (DNA microsatellites), providing strong evidence that natural selection was the driving force behind the observed, rapid, evolutionary changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic history of a group of populations is usually analyzed by reconstructing a tree of their origins. Reliability of the reconstruction depends on the validity of the hypothesis that genetic differentiation of the populations is mostly due to population fissions followed by independent evolution. If necessary, adjustment for major population admixtures can be made. Dating the fissions requires comparisons with paleoanthropological and paleontological dates, which are few and uncertain. A method of absolute genetic dating recently introduced uses mutation rates as molecular clocks; it was applied to human evolution using microsatellites, which have a sufficiently high mutation rate. Results are comparable with those of other methods and agree with a recent expansion of modern humans from Africa. An alternative method of analysis, useful when there is adequate geographic coverage of regions, is the geographic study of frequencies of alleles or haplotypes. As in the case of trees, it is necessary to summarize data from many loci for conclusions to be acceptable. Results must be independent from the loci used. Multivariate analyses like principal components or multidimensional scaling reveal a number of hidden patterns and evaluate their relative importance. Most patterns found in the analysis of human living populations are likely to be consequences of demographic expansions, determined by technological developments affecting food availability, transportation, or military power. During such expansions, both genes and languages are spread to potentially vast areas. In principle, this tends to create a correlation between the respective evolutionary trees. The correlation is usually positive and often remarkably high. It can be decreased or hidden by phenomena of language replacement and also of gene replacement, usually partial, due to gene flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A whole genome cattle-hamster radiation hybrid cell panel was used to construct a map of 54 markers located on bovine chromosome 5 (BTA5). Of the 54 markers, 34 are microsatellites selected from the cattle linkage map and 20 are genes. Among the 20 mapped genes, 10 are new assignments that were made by using the comparative mapping by annotation and sequence similarity strategy. A LOD-3 radiation hybrid framework map consisting of 21 markers was constructed. The relatively low retention frequency of markers on this chromosome (19%) prevented unambiguous ordering of the other 33 markers. The length of the map is 398.7 cR, corresponding to a ratio of ≈2.8 cR5,000/cM. Type I genes were binned for comparison of gene order among cattle, humans, and mice. Multiple internal rearrangements within conserved syntenic groups were apparent upon comparison of gene order on BTA5 and HSA12 and HSA22. A similarly high number of rearrangements were observed between BTA5 and MMU6, MMU10, and MMU15. The detailed comparative map of BTA5 should facilitate identification of genes affecting economically important traits that have been mapped to this chromosome and should contribute to our understanding of mammalian chromosome evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microsatellites are tandem repeat sequences abundant in the genomes of higher eukaryotes and hitherto considered as "junk DNA." Analysis of a human genome representative data base (2.84 Mb) reveals a distinct juxtaposition of A-rich microsatellites and retroposons and suggests their coevolution. The analysis implies that most microsatellites were generated by a 3'-extension of retrotranscripts, similar to mRNA polyadenylylation, and that they serve in turn as "retroposition navigators," directing the retroposons via homology-driven integration into defined sites. Thus, they became instrumental in the preservation and extension of primordial genomic patterns. A role is assigned to these reiterating A-rich loci in the higher-order organization of the chromatin. The disease-associated triplet repeats are mostly found in coding regions and do not show an association with retroposons, constituting a unique set within the family of microsatellite sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To probe genetic variation in the regulation of sexual dimorphism, we have characterized the mouse protein Slp, coded by the gene sex-limited protein (Slp). Slp expression in many strains is limited to males and is androgen-dependent. However, female expression is also observed in rare strains, due to nonlinked gene(s) termed regulator of sex-limitation (rsl). In this report we demonstrate that female expression of Slp results from homozygous recessive allele(s) at a single autosomal locus that maps to a 2.2-centimorgan interval on chromosome 13. This conclusion was supported by extensive genetic analyses including the use of polymorphic microsatellites to type numerous backcross progeny and a recombinant inbred series and to identify the congenic interval in three independently derived congenic strains. Four attractive candidate genes were identified by the localization of rsl. Interestingly, rsl was found not only to enable expression in females but to also increase expression in males. The findings suggest that the expression of Slp and perhaps other sexually dimorphic proteins is regulated by two pathways, one that is dependent upon rsl but not androgens and another that is rsl-independent but requires androgens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long CTG triplet repeats which are associated with several human hereditary neuromuscular disease genes are stabilized in ColE1-derived plasmids in Escherichia coli containing mutations in the methyl-directed mismatch repair genes (mutS, mutL, or mutH). When plasmids containing (CTG)180 were grown for about 100 generations in mutS, mutL, or mutH strains, 60-85% of the plasmids contained a full-length repeat, whereas in the parent strain only about 20% of the plasmids contained the full-length repeat. The deletions occur only in the (CTG)180 insert, not in DNA flanking the repeat. While many products of the deletions are heterogeneous in length, preferential deletion products of about 140, 100, 60, and 20 repeats were observed. We propose that the E. coli mismatch repair proteins recognize three-base loops formed during replication and then generate long single-stranded gaps where stable hairpin structures may form which can be bypassed by DNA polymerase during the resynthesis of duplex DNA. Similar studies were conducted with plasmids containing CGG repeats; no stabilization of these triplets was found in the mismatch repair mutants. Since prokaryotic and human mismatch repair proteins are similar, and since several carcinoma cell lines which are defective in mismatch repair show instability of simple DNA microsatellites, these mechanistic investigations in a bacterial cell may provide insights into the molecular basis for some human genetic diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotic genomes contain tracts of DNA in which a single base or a small number of bases are repeated (microsatellites). Mutations in the yeast DNA mismatch repair genes MSH2, PMS1, and MLH1 increase the frequency of mutations for normal DNA sequences and destabilize microsatellites. Mutations of human homologs of MSH2, PMS1, and MLH1 also cause microsatellite instability and result in certain types of cancer. We find that a mutation in the yeast gene MSH3 that does not substantially affect the rate of spontaneous mutations at several loci increases microsatellite instability about 40-fold, preferentially causing deletions. We suggest that MSH3 has different substrate specificities than the other mismatch repair proteins and that the human MSH3 homolog (MRP1) may be mutated in some tumors with microsatellite instability.